Exponential Asymptotics and Law of the Iterated Logarithm for Intersection Local times of Random Walks1 by Xia Chen

نویسنده

  • XIA CHEN
چکیده

with the right-hand side being identified in terms of the the best constant of the Gagliardo–Nirenberg inequality. Within the scale of moderate deviations, we also establish the precise tail asymptotics for the intersection local time In = #{(k1, . . . , kp) ∈ [1, n];S1(k1)= · · · = Sp(kp)} run by the independent, symmetric, Zd -valued random walks S1(n), . . . , Sp(n). Our results apply to the law of the iterated logarithm. Our approach is based on Feynman–Kac type large deviation, time exponentiation, moment computation and some technologies along the lines of probability in Banach space. As an interesting coproduct, we obtain the inequality ( EI n1+···+na )1/p ≤ ∑ k1+···+ka=m k1 ,...,ka≥0 m! k1! · · ·ka ! ( EI k1 n1 )1/p · · · (EIka na )1/p

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential Asymptotics and Law of the Iterated Logarithm for Intersection Local times of Random Walks

Let α([0,1]) denote the intersection local time of p independent d-dimensional Brownian motions running up to the time 1. Under the conditions p(d− 2)< d and d≥ 2, we prove lim t→∞ t −1 logP{α([0,1])≥ t}=−γα(d, p) with the right-hand side being identified in terms of the the best constant of the Gagliardo–Nirenberg inequality. Within the scale of moderate deviations, we also establish the preci...

متن کامل

On the Law of the Iterated Logarithm for Local Times of Recurrent Random Walks

We consider the law of the iterated logarithm (LIL) for the local time of one-dimensional recurrent random walks. First we show that the constants in the LIL for the local time and for its supremum (with respect to the space variable) are equal under a very general condition given in Jain and Pruitt (1984). Second we evaluate the common value of the constants, as the random walk is in the domai...

متن کامل

Exponential asymptotics for intersection local times of stable processes and random walks

We study large deviations for intersection local times of p independent d-dimensional symmetric stable processes of index β, under the condition p(d − β) < d. Our approach is based on FeynmanKac type large deviations, moment computations and some techniques from probability in Banach spaces.

متن کامل

Moderate Deviations and Laws of the Iterated Logarithm for the Local times of Additive Lévy Processes and Additive Random Walks

We study the upper tail behaviors of the local times of the additive Lévy processes and additive random walks. The limit forms we establish are the moderate deviations and the laws of the iterated logarithm for the L2-norms of the local times and for the local times at a fixed site. Subject classifications: 60F10, 60F15, 60J55, 60G52

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004